Copied to
clipboard

G = C42.20D6order 192 = 26·3

20th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.20D6, C8⋊C411S3, C122Q83C2, (C2×C4).27D12, (C2×C12).38D4, (C2×C8).160D6, C2.9(C8⋊D6), C6.6(C8⋊C22), (C4×C12).5C22, C427S3.2C2, C2.Dic1238C2, C2.D24.16C2, C2.8(C8.D6), C6.9(C4.4D4), (C2×D12).8C22, C22.99(C2×D12), C6.4(C8.C22), C12.225(C4○D4), C4.109(C4○D12), (C2×C24).314C22, (C2×C12).735C23, C4⋊Dic3.10C22, (C2×Dic6).8C22, C2.14(C427S3), C31(C42.28C22), (C3×C8⋊C4)⋊20C2, (C2×C6).118(C2×D4), (C2×C4).679(C22×S3), SmallGroup(192,273)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C42.20D6
C1C3C6C12C2×C12C2×D12C427S3 — C42.20D6
C3C6C2×C12 — C42.20D6
C1C22C42C8⋊C4

Generators and relations for C42.20D6
 G = < a,b,c,d | a4=b4=1, c6=a2b, d2=a2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=b-1c5 >

Subgroups: 344 in 100 conjugacy classes, 39 normal (25 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×D4, C2×Q8, C24, Dic6, D12, C2×Dic3, C2×C12, C22×S3, C8⋊C4, D4⋊C4, Q8⋊C4, C4.4D4, C4⋊Q8, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, C2×Dic6, C2×Dic6, C2×D12, C42.28C22, C2.Dic12, C2.D24, C3×C8⋊C4, C122Q8, C427S3, C42.20D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4.4D4, C8⋊C22, C8.C22, C2×D12, C4○D12, C42.28C22, C427S3, C8⋊D6, C8.D6, C42.20D6

Smallest permutation representation of C42.20D6
On 96 points
Generators in S96
(1 28 84 68)(2 41 85 57)(3 30 86 70)(4 43 87 59)(5 32 88 72)(6 45 89 61)(7 34 90 50)(8 47 91 63)(9 36 92 52)(10 25 93 65)(11 38 94 54)(12 27 95 67)(13 40 96 56)(14 29 73 69)(15 42 74 58)(16 31 75 71)(17 44 76 60)(18 33 77 49)(19 46 78 62)(20 35 79 51)(21 48 80 64)(22 37 81 53)(23 26 82 66)(24 39 83 55)
(1 90 13 78)(2 91 14 79)(3 92 15 80)(4 93 16 81)(5 94 17 82)(6 95 18 83)(7 96 19 84)(8 73 20 85)(9 74 21 86)(10 75 22 87)(11 76 23 88)(12 77 24 89)(25 71 37 59)(26 72 38 60)(27 49 39 61)(28 50 40 62)(29 51 41 63)(30 52 42 64)(31 53 43 65)(32 54 44 66)(33 55 45 67)(34 56 46 68)(35 57 47 69)(36 58 48 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 18 84 77)(2 76 85 17)(3 16 86 75)(4 74 87 15)(5 14 88 73)(6 96 89 13)(7 12 90 95)(8 94 91 11)(9 10 92 93)(19 24 78 83)(20 82 79 23)(21 22 80 81)(25 36 65 52)(26 51 66 35)(27 34 67 50)(28 49 68 33)(29 32 69 72)(30 71 70 31)(37 48 53 64)(38 63 54 47)(39 46 55 62)(40 61 56 45)(41 44 57 60)(42 59 58 43)

G:=sub<Sym(96)| (1,28,84,68)(2,41,85,57)(3,30,86,70)(4,43,87,59)(5,32,88,72)(6,45,89,61)(7,34,90,50)(8,47,91,63)(9,36,92,52)(10,25,93,65)(11,38,94,54)(12,27,95,67)(13,40,96,56)(14,29,73,69)(15,42,74,58)(16,31,75,71)(17,44,76,60)(18,33,77,49)(19,46,78,62)(20,35,79,51)(21,48,80,64)(22,37,81,53)(23,26,82,66)(24,39,83,55), (1,90,13,78)(2,91,14,79)(3,92,15,80)(4,93,16,81)(5,94,17,82)(6,95,18,83)(7,96,19,84)(8,73,20,85)(9,74,21,86)(10,75,22,87)(11,76,23,88)(12,77,24,89)(25,71,37,59)(26,72,38,60)(27,49,39,61)(28,50,40,62)(29,51,41,63)(30,52,42,64)(31,53,43,65)(32,54,44,66)(33,55,45,67)(34,56,46,68)(35,57,47,69)(36,58,48,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,84,77)(2,76,85,17)(3,16,86,75)(4,74,87,15)(5,14,88,73)(6,96,89,13)(7,12,90,95)(8,94,91,11)(9,10,92,93)(19,24,78,83)(20,82,79,23)(21,22,80,81)(25,36,65,52)(26,51,66,35)(27,34,67,50)(28,49,68,33)(29,32,69,72)(30,71,70,31)(37,48,53,64)(38,63,54,47)(39,46,55,62)(40,61,56,45)(41,44,57,60)(42,59,58,43)>;

G:=Group( (1,28,84,68)(2,41,85,57)(3,30,86,70)(4,43,87,59)(5,32,88,72)(6,45,89,61)(7,34,90,50)(8,47,91,63)(9,36,92,52)(10,25,93,65)(11,38,94,54)(12,27,95,67)(13,40,96,56)(14,29,73,69)(15,42,74,58)(16,31,75,71)(17,44,76,60)(18,33,77,49)(19,46,78,62)(20,35,79,51)(21,48,80,64)(22,37,81,53)(23,26,82,66)(24,39,83,55), (1,90,13,78)(2,91,14,79)(3,92,15,80)(4,93,16,81)(5,94,17,82)(6,95,18,83)(7,96,19,84)(8,73,20,85)(9,74,21,86)(10,75,22,87)(11,76,23,88)(12,77,24,89)(25,71,37,59)(26,72,38,60)(27,49,39,61)(28,50,40,62)(29,51,41,63)(30,52,42,64)(31,53,43,65)(32,54,44,66)(33,55,45,67)(34,56,46,68)(35,57,47,69)(36,58,48,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,84,77)(2,76,85,17)(3,16,86,75)(4,74,87,15)(5,14,88,73)(6,96,89,13)(7,12,90,95)(8,94,91,11)(9,10,92,93)(19,24,78,83)(20,82,79,23)(21,22,80,81)(25,36,65,52)(26,51,66,35)(27,34,67,50)(28,49,68,33)(29,32,69,72)(30,71,70,31)(37,48,53,64)(38,63,54,47)(39,46,55,62)(40,61,56,45)(41,44,57,60)(42,59,58,43) );

G=PermutationGroup([[(1,28,84,68),(2,41,85,57),(3,30,86,70),(4,43,87,59),(5,32,88,72),(6,45,89,61),(7,34,90,50),(8,47,91,63),(9,36,92,52),(10,25,93,65),(11,38,94,54),(12,27,95,67),(13,40,96,56),(14,29,73,69),(15,42,74,58),(16,31,75,71),(17,44,76,60),(18,33,77,49),(19,46,78,62),(20,35,79,51),(21,48,80,64),(22,37,81,53),(23,26,82,66),(24,39,83,55)], [(1,90,13,78),(2,91,14,79),(3,92,15,80),(4,93,16,81),(5,94,17,82),(6,95,18,83),(7,96,19,84),(8,73,20,85),(9,74,21,86),(10,75,22,87),(11,76,23,88),(12,77,24,89),(25,71,37,59),(26,72,38,60),(27,49,39,61),(28,50,40,62),(29,51,41,63),(30,52,42,64),(31,53,43,65),(32,54,44,66),(33,55,45,67),(34,56,46,68),(35,57,47,69),(36,58,48,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,18,84,77),(2,76,85,17),(3,16,86,75),(4,74,87,15),(5,14,88,73),(6,96,89,13),(7,12,90,95),(8,94,91,11),(9,10,92,93),(19,24,78,83),(20,82,79,23),(21,22,80,81),(25,36,65,52),(26,51,66,35),(27,34,67,50),(28,49,68,33),(29,32,69,72),(30,71,70,31),(37,48,53,64),(38,63,54,47),(39,46,55,62),(40,61,56,45),(41,44,57,60),(42,59,58,43)]])

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order12222344444446668888121212121212121224···24
size111124222442424242224444222244444···4

36 irreducible representations

dim11111122222224444
type++++++++++++-+-
imageC1C2C2C2C2C2S3D4D6D6C4○D4D12C4○D12C8⋊C22C8.C22C8⋊D6C8.D6
kernelC42.20D6C2.Dic12C2.D24C3×C8⋊C4C122Q8C427S3C8⋊C4C2×C12C42C2×C8C12C2×C4C4C6C6C2C2
# reps12211112124481122

Matrix representation of C42.20D6 in GL6(𝔽73)

1710000
1720000
001105865
00011866
00532620
007151062
,
100000
010000
0071400
00596600
0000714
00005966
,
4600000
0460000
000022
0000710
00334000
00336600
,
4600000
46270000
00005914
00002814
00403300
00663300

G:=sub<GL(6,GF(73))| [1,1,0,0,0,0,71,72,0,0,0,0,0,0,11,0,53,71,0,0,0,11,2,51,0,0,58,8,62,0,0,0,65,66,0,62],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,59,0,0,0,0,14,66,0,0,0,0,0,0,7,59,0,0,0,0,14,66],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,33,33,0,0,0,0,40,66,0,0,2,71,0,0,0,0,2,0,0,0],[46,46,0,0,0,0,0,27,0,0,0,0,0,0,0,0,40,66,0,0,0,0,33,33,0,0,59,28,0,0,0,0,14,14,0,0] >;

C42.20D6 in GAP, Magma, Sage, TeX

C_4^2._{20}D_6
% in TeX

G:=Group("C4^2.20D6");
// GroupNames label

G:=SmallGroup(192,273);
// by ID

G=gap.SmallGroup(192,273);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,254,387,142,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2*b,d^2=a^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^-1*c^5>;
// generators/relations

׿
×
𝔽